Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Mol Ther ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532630

ABSTRACT

Base editing of hematopoietic stem/progenitor cells (HSPCs) is an attractive strategy for treating immunohematologic diseases. However, the feasibility of using adenine-base-edited HSPCs for treating X-linked severe combined immunodeficiency (SCID-X1), the influence of dose-response relationships on immune cell generation, and the potential risks have not been demonstrated in vivo. Here, a humanized SCID-X1 mouse model was established, and 86.67% ± 2.52% (n = 3) of mouse hematopoietic stem cell (HSC) pathogenic mutations were corrected, with no single-guide-RNA (sgRNA)-dependent off-target effects detected. Analysis of peripheral blood over 16 weeks post-transplantation in mice with different immunodeficiency backgrounds revealed efficient immune cell generation following transplantation of different amounts of modified HSCs. Therefore, a large-scale infusion of gene-corrected HSCs within a safe range can achieve rapid, stable, and durable immune cell regeneration. Tissue-section staining further demonstrated the restoration of immune organ tissue structures, with no tumor formation in multiple organs. Collectively, these data suggest that base-edited HSCs are a potential therapeutic approach for SCID-X1 and that a threshold infusion dose of gene-corrected cells is required for immune cell regeneration. This study lays a theoretical foundation for the clinical application of base-edited HSCs in treating SCID-X1.

2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 129-133, 2024 Feb 10.
Article in Chinese | MEDLINE | ID: mdl-38311548

ABSTRACT

OBJECTIVE: To explore the genetic basis of eighteen patients with Tetrahydrobiopterin deficiency (BH4D) from Gansu Province. METHODS: Eighteen patients diagnosed with BH4D at Gansu Provincial Maternal and Child Health Care Hospital from January 2018 to December 2021 were selected as the study subjects. Whole exome sequencing was carried out, and candidate variants were verified by Sanger sequencing. RESULTS: All of the thirty-six alleles of the eighteen patients were successfully determined by molecular genetic testing. Sixteen patients were found to harbor variants of the PTS gene, and two had harbored variants of the QDPR gene. Ten variants were detected in the PTS gene, with the most common ones being c.259C>T (34.38%) and c.286G>A (15.63%). Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.259C>T was classified as a pathogenic variant, whilst the c.286G>A, c.166G>A, c.200C>T, c.272A>G, c.402A>C, c.421G>T, c.84_291A>G and c.317C>T were classified as likely pathogenic variants. A novel c.289_290insCTT variant was classified as likely pathogenic (PM1+PM2_Supporting+PM3+PP3+PP4). The two variants (c.478C>T and c.665C>T) detected in the QDPR gene were both classified as variants of uncertain significance (PM1+PM2_Supporting+PP3+PP4). CONCLUSION: Genetic testing has clarified the pathogenic variants in these BH4D patients, which has enabled timely and accurate clinical intervention and treatment, and provided a reference for genetic counseling and reproductive guidance for their families.


Subject(s)
Phenylketonurias , Child , Humans , Alleles , Phenylketonurias/genetics , Family , Genetic Counseling , Genetic Testing , Mutation
3.
Ophthalmic Genet ; 45(2): 147-152, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38284172

ABSTRACT

PURPOSE: To identify RHO mutations in patients with non-syndromic retinitis pigmentosa (NS-RP). METHODS: A total of 143 probands (46 family history and 97 sporadic cases) with NS-RP were recruited from Southeast China. The coding exons and adjacent intronic regions of RHO were PCR-amplified and sequenced by Sanger sequencing. The candidate variant was evaluated by the guidelines of American College of Medical Genetics and further validated through co-segregation analysis within the family. RESULTS: Five heterozygous mutations in RHO were detected in 5 out of 143 probands, where the frequency of RHO mutations in our cohort was approximately 3.5% (5/143) and 10.8% (5/46) for probands and families with NS-RP, respectively. Three known disease-causing mutations including c.C1030T (p.Q344X), c.C173G (p.T58R), and c.G266A (p.G89D) were identified in three unrelated families. The other two previously unreported mutations c.557C>A (p.S186X) and c.944delA (p.N315TfsX43) were confirmed in Family RP-087 and Family RP-139, respectively. These mutations co-segregated with available affected individuals in each family were not observed in the unaffected family members or in the 112 unrelated controls. CONCLUSIONS: This report expands the mutational spectrum of RHO gene associated with NS-RP and demonstrates the frequency of RP RHO mutations in Southeast Chinese populations.


Subject(s)
Retinitis Pigmentosa , Rhodopsin , Humans , Rhodopsin/genetics , Pedigree , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics , Mutation , Base Sequence , DNA Mutational Analysis
4.
J Cell Physiol ; 239(4): e31189, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219074

ABSTRACT

Joubert syndrome (JBTS) is a systematic developmental disorder mainly characterized by a pathognomonic mid-hindbrain malformation. All known JBTS-associated genes encode proteins involved in the function of antenna-like cellular organelle, primary cilium, which plays essential roles in cellular signal transduction and development. Here, we identified four unreported variants in ARL13B in two patients with the classical features of JBTS. ARL13B is a member of the Ras GTPase family and functions in ciliogenesis and cilia-related signaling. The two missense variants in ARL13B harbored the substitutions of amino acids at evolutionarily conserved positions. Using model cell lines, we found that the accumulations of the missense variants in cilia were impaired and the variants showed attenuated functions in ciliogenesis or the trafficking of INPP5E. Overall, these findings expanded the ARL13B pathogenetic variant spectrum of JBTS.


Subject(s)
Abnormalities, Multiple , Cerebellum/abnormalities , Eye Abnormalities , Kidney Diseases, Cystic , Retina/abnormalities , Humans , Abnormalities, Multiple/genetics , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Eye Abnormalities/pathology , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/pathology , Phosphoric Monoester Hydrolases/metabolism , Retina/metabolism , Cilia/genetics , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism
5.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(1): 67-71, 2024 Jan 15.
Article in Chinese | MEDLINE | ID: mdl-38269462

ABSTRACT

OBJECTIVES: To investigate the disease spectrum and pathogenic genes of inherited metabolic disorder (IMD) among neonates in Gansu Province of China. METHODS: A retrospective analysis was conducted on the tandem mass spectrometry data of 286 682 neonates who received IMD screening in Gansu Provincial Maternal and Child Health Hospital from January 2018 to December 2021. A genetic analysis was conducted on the neonates with positive results in tandem mass spectrometry during primary screening and reexamination. RESULTS: A total of 23 types of IMD caused by 28 pathogenic genes were found in the 286 682 neonates, and the overall prevalence rate of IMD was 0.63 (1/1 593), among which phenylketonuria showed the highest prevalence rate of 0.32 (1/3 083), followed by methylmalonic acidemia (0.11, 1/8 959) and tetrahydrobiopterin deficiency (0.06, 1/15 927). In this study, 166 variants were identified in the 28 pathogenic genes, with 13 novel variants found in 9 genes. According to American College of Medical Genetics and Genomics guidelines, 5 novel variants were classified as pathogenic variants, 7 were classified as likely pathogenic variants, and 1 was classified as the variant of uncertain significance. CONCLUSIONS: This study enriches the database of pathogenic gene variants for IMD and provides basic data for establishing an accurate screening and diagnosis system for IMD in this region.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Metabolic Diseases , Child , Infant, Newborn , Humans , Retrospective Studies , Metabolic Diseases/genetics , Amino Acid Metabolism, Inborn Errors/genetics , China , Child Health
6.
Ophthalmic Res ; 67(1): 62-75, 2024.
Article in English | MEDLINE | ID: mdl-38091959

ABSTRACT

INTRODUCTION: Hermansky-Pudlak syndrome (HPS) is a rare autosomal-recessive disease characterized by ocular albinism (OA) or oculocutaneous albinism (OCA), platelet dysfunction, and other symptoms. This study aimed to analyze the molecular defect in two Chinese families with suspected OA, as well as to investigate the profile of HPS6 variants and their genotype-phenotype correlations. METHODS: Seven members from two families were recruited and underwent clinical ophthalmologic examinations. The genomic DNA was extracted from peripheral blood leukocytes. Whole-exome sequencing was performed on the proband of family JX. The single coding exon of HPS6 was directly Sanger sequenced based on PCR amplification in all available family members. An additional 46 probands from families or sporadic cases with the pathogenic variants of HPS6 reported in the literature were reviewed. RESULTS: We identified two different compound heterozygous truncating variants of HPS6 in probands with suspected OA from two independent families. The proband of family JX had c.1674dup and c.503-504del variants, and the other proband from family CZ had a nonsense variant of c.1114C>T and a frameshift variant of c.1556del. Among them, c.1674dup and c.1556del variants in HPS6 have not been reported previously. Therefore, our patients were diagnosed as HPS6 disease by molecular diagnostics. In the retrospective cohort of HPS6 patients, we delineated the profile of HPS6 variants and revealed a significant overlap between CpG islands and the variants of HPS6, suggesting a potential link between DNA methylation and HPS6 variants. We also observed a spatial aggregation of the variants in 3D structure of HPS6 protein, implying the possible functional significance of these structural regions. In addition, we did not find any significant genotype-phenotype correlation of HPS6, and neither did we observe a correlation between the truncation length of the HPS6 protein and the phenotype of HPS6 disease. CONCLUSION: Our research expands the spectrum of HPS6 variants, providing a comprehensive delineation of their profile and systematically investigating genotype-phenotype correlations in HPS6. These findings could offer potentially valuable clues for investigating the molecular mechanism underlying HPS6 pathogenesis, as well as aiding the clinical diagnosis of HPS6 patients and improving disease prognosis.


Subject(s)
Albinism, Ocular , Hermanski-Pudlak Syndrome , Humans , Albinism, Ocular/diagnosis , Albinism, Ocular/genetics , Retrospective Studies , Hermanski-Pudlak Syndrome/diagnosis , Hermanski-Pudlak Syndrome/genetics , Phenotype , Proteins/genetics , Mutation , Pedigree , Intracellular Signaling Peptides and Proteins/genetics
7.
Orphanet J Rare Dis ; 18(1): 128, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37237386

ABSTRACT

BACKGROUND: Phenylketonuria (PKU) is an autosomal recessive congenital metabolic disorder caused by PAH variants. Previously, approximately 5% of PKU patients remained undiagnosed after Sanger sequencing and multiplex ligation-dependent probe amplification. To date, increasing numbers of pathogenic deep intronic variants have been reported in more than 100 disease-associated genes. METHODS: In this study, we performed full-length sequencing of PAH to investigate the deep intronic variants in PAH of PKU patients without definite genetic diagnosis. RESULTS: We identified five deep intronic variants (c.1199+502A>T, c.1065+241C>A, c.706+368T>C, c.706+531>C, and c.706+608A>C). Of these, the c.1199+502A>T variant was found at high frequency and may be a hotspot PAH variant in Chinese PKU. c.706+531T>C and c.706+608A>C are two novel variants that extend the deep intronic variant spectrum of PAH. CONCLUSION: Deep intronic variant pathogenicity analysis can further improve the genetic diagnosis of PKU patients. In silico prediction and minigene analysis are powerful approaches for studying the functions and effects of deep intronic variants. Targeted sequencing after full-length gene amplification is an economical and effective tool for the detection of deep intron variation in genes with small fragments.


Subject(s)
Phenylalanine Hydroxylase , Phenylketonurias , Humans , Asian People , Introns/genetics , Mutation , Phenylketonurias/genetics , Phenylketonurias/diagnosis
8.
Hum Genomics ; 17(1): 36, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37098607

ABSTRACT

BACKGROUND: Phenylketonuria (PKU) is a common, congenital, autosomal recessive, metabolic disorder caused by Phenylalanine hydroxylase (PAH) variants. METHODS: 967 PKU patients from Gansu, China were genotyped by Sanger sequencing, multiplex ligation-dependent probe amplification, and whole exome sequencing. We analyzed the variants of PAH exons, their flanking sequences, and introns. RESULTS: The detection of deep intronic variants in PAH gene can significantly improve the genetic diagnostic rate of PKU. The distribution of PAH variants among PKU subtypes may be related to the unique genetic background in Gansu, China. CONCLUSION: The identification of PAH hotspot variants will aid the development of large-scale neonatal genetic screening for PKU. The five new PAH variants found in this study further expand the spectrum of PAH variants. Genotype-phenotype correlation analysis may help predict the prognosis of PKU patients and enable precise treatment regimens to be developed.


Subject(s)
Phenylalanine Hydroxylase , Phenylketonurias , Humans , Phenylalanine Hydroxylase/genetics , Phenylalanine Hydroxylase/metabolism , Phenylketonurias/genetics , Phenylketonurias/diagnosis , Mutation , Genotype , Genetic Association Studies , China , Phenotype
9.
Fertil Steril ; 119(6): 1057-1067, 2023 06.
Article in English | MEDLINE | ID: mdl-36813125

ABSTRACT

OBJECTIVE: To investigate changes in lipid parameters around the final menstrual period (FMP) in Chinese women. DESIGN: A prospective community-based cohort study. PATIENT(S): Three thousand seven hundred fifty six Chinese women from the Kailuan cohort study who participated in the first examination and reached their FMP by the end of the seventh examination. Health examinations were performed every 2 years. Multivariable piece-wise linear mixed-effect models were used for repeated measures of lipids as a function of time around FMP. INTERVENTION(S): Number of years before or after FMP at each examination. MAIN OUTCOME MEASURE(S): Lipids at each examination, including total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TGs). RESULT(S): Total cholesterol, LDL-C, and TGs began to increase in early transition, regardless of baseline age. Moreover, TC and LDL-C had a maximum annual increase from 1 year before to 2 years after FMP; TGs had a maximum annual increase from early transition to the fourth-year after menopause. The trajectories in other postmenopause segments differed across subgroups of different baseline ages. Furthermore, HDL-C remained stable around FMP if baseline age was <45 years, whereas if baseline age was ≥45 years, HDL-C would first decline and then rise during postmenopause. Women with a higher body mass index (BMI) underwent less adverse changes in TC and TGs during postmenopause and had decline in HDL-C before menopause. A later FMP age was associated with less adverse changes in TC, LDL-C, and TGs and greater increase in HDL-C during postmenopause; it was associated with a greater increase in LDL-C during early transition. CONCLUSION(S): This repeated measurement cohort study of indigenous Chinese women demonstrated that, regardless of baseline age, the adverse effect of menopause on lipids was since early transition, and the most adverse change time was from 1 year before to 2 years after FMP; HDL-C decreased first and then increased during postmenopause in older women; BMI and FMP age affected lipid trajectory mainly during postmenopause. We highlighted positive lipid management during menopause to reduce the burden of postmenopausal dyslipidemia. For lipid stratification management in postmenopausal women, BMI and FMP age are important factors.


Subject(s)
East Asian People , Menopause , Female , Humans , Aged , Middle Aged , Cohort Studies , Cholesterol, LDL , Prospective Studies , Triglycerides , Cholesterol, HDL
10.
BMC Med Genomics ; 16(1): 4, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635699

ABSTRACT

BACKGROUND: KIAA0586, also known as Talpid3, plays critical roles in primary cilia formation and hedgehog signaling in humans. Variants in KIAA0586 could cause some different ciliopathies, including Joubert syndrome (JBTS), which is a clinically and genetically heterogeneous group of autosomal recessive neurological disorders. METHODS AND RESULTS: A 9-month-old girl was diagnosed as JBTS by the "molar tooth sign" of the mid-brain and global developmental delay. By whole-exome sequencing, we identified a single nucleotide variant c.3303G > A and a 1.38-kb deletion in KIAA0586 in the proband. These two variants of KIAA0586 were consistent with the mode of autosomal recessive inheritance in the family, which was verified using Sanger sequencing. CONCLUSIONS: This finding of a compound heterozygote with a 1.38-kb deletion and c.3303G > A gave a precise genetic diagnosis for the patient, and the novel 1.38-kb deletion also expanded the pathogenic variation spectrum of JBTS caused by KIAA0586.


Subject(s)
Abnormalities, Multiple , Eye Abnormalities , Kidney Diseases, Cystic , Female , Humans , Infant , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Cerebellum , Eye Abnormalities/genetics , Eye Abnormalities/diagnosis , Hedgehog Proteins/genetics , Kidney Diseases, Cystic/genetics , Mutation , Nucleotides , Pedigree , Retina/pathology
11.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(1): 57-61, 2023 Jan 10.
Article in Chinese | MEDLINE | ID: mdl-36585002

ABSTRACT

OBJECTIVE: To explore the genetic basis for a child with mental retardation. METHODS: Whole exome sequencing was carried out for the child. Candidate variant was screened based on his clinical features and verified by Sanger sequencing. RESULTS: The child was found to harbor a c.995_1002delAGACAAAA(p.Asp332AlafsTer84) frameshift variant in the SYNGAP1 gene. Bioinformatic analysis suggested it to be pathogenic. The same variant was not detected in either parent. CONCLUSION: The c.995_1002delAGACAAAA(p.Asp332AlafsTer84) frameshift variant of the SYNGAP1 gene probably underlay the mental retardation in this child. Above finding has expanded the spectrum of SYNGAP1 gene variants and provided a basis for the diagnosis and treatment for this child.


Subject(s)
Intellectual Disability , Child , Humans , Intellectual Disability/genetics , Frameshift Mutation , High-Throughput Nucleotide Sequencing , Computational Biology , Heterozygote , Mutation , ras GTPase-Activating Proteins/genetics
12.
Am J Ophthalmol ; 248: 96-106, 2023 04.
Article in English | MEDLINE | ID: mdl-36493848

ABSTRACT

PURPOSE: To reveal the clinical and genetic features of 54 Chinese pedigrees with syndromic or nonsyndromic retinal dystrophies related to CEP290 and to explore the genotype-phenotype correlation. DESIGN: Retrospective cohort study. METHODS: Patients diagnosed with nonsyndromic inherited retinal dystrophy (IRD) or syndromic ciliopathy (SCP) were enrolled. We identified 61 patients from 54 families carrying biallelic pathogenic CEP290 variants using next-generation sequencing, Sanger sequencing, and co-segregation validation. Genotype-phenotype correlation was evaluated. RESULTS: This study included 37 IRD patients from 32 families and 24 patients with SCP from 22 pedigrees. Four retinal dystrophy phenotypes were confirmed: Leber congenital amaurosis (LCA, 46/61), early-onset severe retinal dystrophy (EOSRD, 4/61), retinitis pigmentosa (RP, 10/61), and cone-rod dystrophy (CORD, 1/61). The SCP phenotypes included Joubert syndrome (JS) (23/24) and Bardet-Biedl syndrome (BBS) (1/24). We detected 73 different CEP290 variants, of which 33 (45.2%) were not previously reported. Two novel copy number variations (CNVs) and 1 novel pathogenic synonymous change were identified. The most recurrent alterations in the IRD and SCP were p.Q123* (6/64, 9.4%) and p.I556Ffs*17 (10/44, 22.7%), respectively. IRD patients carried more stop-gain alleles (25/64, 39.1%), whereas SCP patients carried more frameshift alleles (23/44, 52.3%). CONCLUSIONS: LCA was the most common retinal dystrophy phenotype, and JS was the most prevalent syndrome in CEP290 patients; RP/CORD and BBS may be present in early adulthood. The hot spot variants and distribution of genotypes were distinct between IRD and SCP. Our study expands the CEP290 variant spectrum and enhances the current knowledge of CEP290 heterogeneity.


Subject(s)
Cone-Rod Dystrophies , Retinal Dystrophies , Humans , DNA Copy Number Variations , East Asian People , Retrospective Studies , Mutation , Retinal Dystrophies/diagnosis , Retinal Dystrophies/genetics , Phenotype , Pedigree , DNA Mutational Analysis , Antigens, Neoplasm/genetics , Cytoskeletal Proteins/genetics , Cell Cycle Proteins/genetics
13.
Front Mol Biosci ; 9: 986556, 2022.
Article in English | MEDLINE | ID: mdl-36304929

ABSTRACT

Phenylketonuria (PKU) is a genetic disorder with amino acid metabolic defect, which does great harms to the development of newborns and children. Early diagnosis and treatment can effectively prevent the disease progression. Here we developed a PKU screening model using random forest classifier (RFC) to improve PKU screening performance with excellent sensitivity, false positive rate (FPR) and positive predictive value (PPV) in all the validation dataset and two testing Chinese populations. RFC represented outstanding advantages comparing several different classification models based on machine learning and the traditional logistic regression model. RFC is promising to be applied to neonatal PKU screening.

14.
J Hum Genet ; 67(11): 643-649, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35982127

ABSTRACT

Hereditary hearing loss is genetically heterogeneous, with diverse clinical manifestations. Here we performed targeted genome sequencing of 227 hearing loss related genes in 1027 patients with bilateral hearing loss and 520 healthy volunteers with normal hearing to comprehensively identify the molecular etiology of hereditary hearing loss in a large cohort from China. We obtained a diagnostic rate of 57.25% (588/1027) for the patients, while 4.67% (48/1027) of the patients were identified with uncertain diagnoses. Of the implicated 35 hearing loss genes, three common genes, including SLC26A4(278/588), GJB2(207/588), MT-RNR1(19/588), accounted for 85.54% (503/588) of the diagnosed cases, while 32 uncommon hearing loss genes, including MYO15A, MITF, OTOF, POU3F4, PTPN11, etc. accounted for the remaining diagnostic rate of 14.46% (85/588). Apart from Pendred syndrome, other eight types of syndromic hearing loss were also identified. Of the 64 uncertain significant variants and 244 pathogenic/likely pathogenic variants identified in the patients, 129 novel variants were also detected. Thus, the molecular etiology presented with high heterogeneity with the leading causes to be SLC26A4 and GJB2 genes in the Chinese hearing loss population. It's urgent to develop a database of the ethnicity-matched healthy population as well as to perform functional studies for further classification of uncertain significant variants.


Subject(s)
Deafness , Hearing Loss , Humans , Connexin 26/genetics , Connexins/genetics , Hearing Loss/diagnosis , Hearing Loss/epidemiology , Hearing Loss/genetics , Deafness/genetics , High-Throughput Nucleotide Sequencing , China/epidemiology , Mutation , POU Domain Factors/genetics
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(7): 689-693, 2022 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-35810422

ABSTRACT

OBJECTIVE: To carry out genetic analysis for 3 children from two Chinese families affected with maple syrup urine disease (MSUD). METHODS: Target capture - next-generation sequencing and Sanger sequencing were used to detect pathogenic variants associated with MSUD. RESULTS: The proband from family 1 was found to harbor homozygous c.560G>T (p.Gly187Val) variant of the BCKDHB gene (NM_000056), whilst the two patients from family 2 were found to harbor compound heterozygous variants c.197-2A>G (splicing)/c.218delT (p.F74Sfs*4) of the BCKDHB gene. Among these, the c.560G>T and c.218delT variants were unreported previously. CONCLUSION: The new variants discovered in this study have expanded the mutational spectrum of the BCKDHB gene.


Subject(s)
Maple Syrup Urine Disease , Asian People/genetics , Child , China , Genetic Testing , Humans , Maple Syrup Urine Disease/diagnosis , Maple Syrup Urine Disease/genetics , Mutation
16.
BMC Med Genomics ; 14(1): 175, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193122

ABSTRACT

BACKGROUND: Mucopolysaccharidosis type II (MPS II) is an X-linked multisystem disorder caused by mutations in the gene encoding iduronate 2-sulfatase (IDS). The clinical manifestations of MPS II include skeletal deformities, airway obstruction, cardiomyopathy, and neurologic deterioration. MPS II has high genetic heterogeneity disorder, and ~ 658 variants of IDS have been reported. METHODS: We undertook a detailed pedigree analysis of four patients within the same family by targeted next-generation sequencing and Sanger sequencing. RESULTS: We identified a novel heterozygous frameshift variant, c.1224delC(p.Pro408ProfsTer31), of IDS in three patients. We defined c.1224delC as a pathogenic variant according to the 2015 guidelines set by the American College of Medical Genetics and Genomics. CONCLUSION: We reported the second Chinese female MPS II patient. We helped to ensure that these two families had healthy babies. Our findings have enlarged the mutational spectrum of IDS, and these findings could be useful for genetic counseling and the prenatal diagnosis of MPS II.


Subject(s)
Mucopolysaccharidosis II
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(5): 430-434, 2021 May 10.
Article in Chinese | MEDLINE | ID: mdl-33974249

ABSTRACT

OBJECTIVE: To establish a newborn screening system for Duchenne muscular dystrophy (DMD) through assessment of MM isoenzyme of creatine kinase (CK-MM) activity. METHODS: The CK-MM level was detected using dry blood spot filter paper from 10 252 male newborns. The results were grouped based on their gestational age, sampling time and intervals between the experiments. The threshold value for CK-MM necessitating genetic testing was determined. Next-generation sequencing (NGS) was carried out for those with a CK-MM value over the threshold, and the result was verified by multiplex ligation-dependent probe amplification (MLPA). RESULTS: Based on the result of non-parametric rank sum test, the median CK-MM concentration has increased with the gestational age, and was inversely correlated with the age of the newborns among unaffected specimens. CK-MM on dry blood spot filter paper can be stable for 14 days at 2-8℃. Statistical analysis of CK-MM value of the 10 252 neonates suggested that the threshold may be set as 700 ng/mL. Exonic deletions were found in 2 confirmed cases, whose CK-MM level was greater than 2000 ng/mL. CONCLUSION: Detection of CK-MM in dry blood spot filter paper has provided an effective method for newborn screening of DMD. This simple and inexpensive method can be used for large-scale screening, which is of great value to the early intervention and treatment of the disease.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Dystrophin/genetics , Exons , Humans , Infant, Newborn , Male , Multiplex Polymerase Chain Reaction , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Neonatal Screening
19.
Mol Genet Genomic Med ; 9(6): e1682, 2021 06.
Article in English | MEDLINE | ID: mdl-33822487

ABSTRACT

BACKGROUND: Joubert syndrome (JBTS) is a rare genetic disorder that is characterized by midbrain-hindbrain malformations. Multiple variants in genes that affect ciliary function contribute to the genetic and clinical heterogeneity of JBTS and its subtypes. However, the correlation between genotype and phenotype has not been elucidated due to the limited number of patients available. METHODS: In this study, we observed different clinical features in two siblings from the same family. The older sibling was classified as a pure JBTS patient, whereas her younger sibling displayed oral-facial-digital defects and was therefore classified as an oral-facial-digital syndrome type VI (OFD VI) patient. Next, we performed human genetic tests to identify the potential pathogenic variants in the two siblings. RESULTS: Genetic sequencing indicated that both siblings harbored compound heterozygous variants of a missense variant (c.1067C>T, p.S356F) and a frameshift variant (c.8377_8378del, p.E2793Lfs*24) in CPLANE1 (NM_023073.3). CONCLUSION: This study reports that two novel CPLANE1 variants are associated with the occurrence of JBTS and OFD VI. These results help elucidate the intrafamilial phenotypic variability associated with CPLANE1 variants.


Subject(s)
Abnormalities, Multiple/genetics , Cerebellum/abnormalities , Eye Abnormalities/genetics , Kidney Diseases, Cystic/genetics , Membrane Proteins/genetics , Phenotype , Retina/abnormalities , Abnormalities, Multiple/pathology , Adolescent , Cerebellum/pathology , Child , Eye Abnormalities/pathology , Female , Frameshift Mutation , Heterozygote , Humans , Kidney Diseases, Cystic/pathology , Male , Pedigree , Retina/pathology
20.
Biomed Res Int ; 2021: 6661860, 2021.
Article in English | MEDLINE | ID: mdl-33628804

ABSTRACT

PPP2R5D-related neurodevelopmental disorder, which is mainly caused by de novo missense variants in the PPP2R5D gene, is a rare autosomal dominant genetic disorder with about 100 patients and a total of thirteen pathogenic variants known to exist globally so far. Here, we present a 24-month-old Chinese boy with developmental delay and other common clinical characteristics of PPP2R5D-related neurodevelopmental disorder including hypotonia, macrocephaly, intellectual disability, speech impairment, and behavioral abnormality. Trio-whole exome sequencing (WES) and Sanger sequencing were performed to identify the causal gene variant. The pathogenicity of the variant was evaluated using bioinformatics tools. We identified a novel pathogenic variant in the PPP2R5D gene (c.620G>T, p.Trp207Leu). The variant is located in the variant hotspot region of this gene and is predicted to cause PPP2R5D protein dysfunction due to an increase in local hydrophobicity and unstable three-dimensional structure. We report a novel pathogenic variant of PPP2R5D associated with PPP2R5D-related neurodevelopmental disorder from a Chinese family. Our findings expanded the phenotypic and mutational spectrum of PPP2R5D-related neurodevelopmental disorder.


Subject(s)
Intellectual Disability/genetics , Mutation, Missense , Neurodevelopmental Disorders/genetics , Pedigree , Phenotype , Protein Phosphatase 2/genetics , Amino Acid Substitution , Child , Child, Preschool , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...